Saturday, January 31, 2009

Improving Communication on Data Governance Teams

If data governance is about enabling people to improve processes, your team should consider some tools to help communication between the people. Particularly if your data governance team is global, communication software can improve efficiency by working through some of the issues of a diverse team. If teams are in different time zones, it will be difficult for you to hold status meetings at a time that's convenient for all. The good news is that there are some fantastic software tools including Web 2.0 tools that can support communications in a data governance team.

I'm sure you've heard of, and used, most of these technologies. But have you considered using them on your data governance project?

Blogs
Blogs are great ways to provide commentary or news on your data governance project. The writer may use text, images, and links to other blogs written by other team members to inform and foster teamwork. A blog allows for one person's perspective on the data governance project, but readers can leave comments and links to their own blogs. Blogs can educate and inform data governance groups, and they can use them to debate unresolved issues or to continue discussions between meetings.
Data governance teams could designate certain team members to blog about the problems they are trying to solve and the projects they are working on. Over time, this type of blog would help keep a record of the processes used - what works and what doesn't. It can also be used to inform data stewards, data governance constituents and other readers about how the company is working to solve data quality issues.

RSS Feeds
The problem with blogs is that you have to revisit them frequently in order to keep up on the latest news. RSS feeds are a great way to push crucial data governance information to the team benefits them by improving communication.

Wikis
Wikis can hold the latest corporate data policies. Wikis can be opened up to the corporation and provide communications across the enterprise.
There are a lot wikis to choose from. Your best bet is to check out the matrix at www.wikimatrix.org

Workflow
Let’s not forget workflow tools. Workflow software is genre of powerful tools for collaboration and should be considered to improve efficiency into your data governance process. With workflow tools, teams can manage the processes and coordination of the data governance team. The processes managed with workflow tools might include any of the following:

  • work progress of a person or group
  • business approval processes
  • challenges of specific data governance technical processes like ETL or data profiling
  • financial approval processes
Much of the work involved in data governance is meeting and discussing status. Workflow software can save of the time and human capital investment that goes into holding status meetings by covering status and progress in an application. Employees update their status on specific task while managers can see what is on schedule and what is behind.
Some examples of workflow tools include Attask, Basecamp, Clarizen, Sharepoint

Friday, January 9, 2009

Starting Your Own Personal Data Quality Crusade

As I talk to people in the industry, many folks comment on their organization's lack of interest when it comes to information quality. People have the tendency to think that responsibility for information quality starts with someone else, not themselves. In truth, we all know that information quality is the responsibility of everyone in the organization, from the call center operators to the sales force to IT and beyond.
So why not start your own personal crusade, your own marketing initiative to drive home the power of information quality? Use the power of the e-mail signature to get your message across.

Use these graphics in your signature file to drive home the important of IQ to your organization.

I may knock out a few more banners this weekend, but if you have your own ideas for a custom "Information Quality" banner, let me know and I'll post it.




Friday, January 2, 2009

Building a More Powerful Data Quality Scorecard

Most data governance practitioners agree that a data quality scorecard is an important tool in any data governance program. It provides comprehensive information about quality of data in a database, and perhaps even more importantly, allows business users and technical users to collaborate on the quality issue.

However, if we show that 7% of all tables have data quality issues, the number is useless - there is no context. You can’t say whether it is good or bad, and you can’t make any decisions based on this information. There is no value associated with the score.

In an effort to improve processes, the data governance teams should roll-up the data into metrics into slightly higher formulations. In their book “Journey to Data Quality”, authors Lee, Pipino, Funk and Wang correctly suggest that making the measurements quantifiable and traceable provide the next level of transparency to the business. The metrics may be rolled up into a completeness rating, for example if your database contains 100,000 name and address postal codes and 3,500 records are incomplete, 3.5% of your postal codes failed and 96.5% pass. Similar simple formulas exist for Accuracy, Correctness, Currency and Relevance, too. However, this first aggregation still doesn’t support data governance, because business users aren’t thinking that way. They have processes that are supported by data and it's still a stretch figuring out why this all matters.

Views of Data Quality Scorecard
Your plan must be to make data quality scorecards for different internal audiences - marketing, IT, c-level, etc.

The aggregation might look something like this:You must design the scorecards to meet the needs of the interest of the different audiences, from technical through to business and up to executive. At the beginning of a data quality scorecard is information about data quality of individual data records. This is the default information that most profilers will deliver out of the box. As you aggregate scores, the high-level measures of the data quality become more meaningful. In the middle are various score sets allowing your company to analyze and summarize data quality from different perspectives. If you define the objective of a data quality assessment project as calculating these different aggregations, you will have much easier time maturing your data governance program. The business users and c-level will begin to pay attention.

Business users are looking for whether the data supports the business process. They want to know if the data is facilitating compliance with laws. They want to decide whether their programs are “Go”, “Caution” or “Stop” like a traffic light. They want to know whether the current processes are giving them good data so they can change them if necessary. You can only do this by aggregating the information quality results and aligning those results with business.

Tuesday, December 9, 2008

2009 MIT Information Quality Industry Symposium

This time of year, we’re all looking at our budgets and planning for 2009. I’d like to recommend an event that I’ve been participating in for the past several years – the MIT IQ symposium. It’s in my travel budget and I’m looking forward to going to this event again this year.

The symposium is a July event in Boston that is a discussion and exchange of ideas about data quality between practitioners and academicians. The goal is less commercial than you would find at a typical symposium. In the case of this MIT event, it’s more about the mission and philosophy of information quality.

Day one focuses on education, with highly qualified and very interesting speakers teaching you about enterprise architecture, data governance, business intelligence, data warehousing. and data quality. Latest methodologies, frameworks, and best practice cases are the topics. Day two, the sessions deconstruct industry-specific topics. There is a government track, healthcare track and business track. On the last day, a half day, the sessions are more about the future of information quality.

I’ve grown to really enjoy the presentations, information quality theory and hallway chat that you find here. If you have some travel budget, please consider earmarking some of it for this event.

Friday, December 5, 2008

Short Ham Rule and Data Governance

One of my old bosses, a long time IBM VP who was trained in the traditional Big Blue executive training program, used to refer to the “short ham” rule quite often. With my apologies for its lack of political correctness, the story goes something like this:

Sarah is recently married and for the first time decides to cook the Easter ham for her new extended family. Her spouse’s sisters, mother and grandmother are all coming to dinner and as a new bride, she is nervous. As the family arrives, she begins preparing it for dinner.

Sarah’s sister-in-law Debbie helps with the preparation.
As Sarah begins to put the ham into the oven, Debbie stops her. “You must cut off the back half of the ham before it goes into the oven.” she says.

Sarah was nervous, but somehow musters the courage to ask a simple question – why?
Debbie is shaken for a moment at the nerve of her new sister-in-law. How dare she question the family tradition?

Debbie pauses then says, “Well, I’m not sure. My Mom always does it. Let’s ask her why.”


When asked, Mom also hesitates. “Well, my Mom always cut off that part of the ham. I’m not sure why.”


Finally, the group turns to Grandma, who is sitting in her rocking chair listening to the discussion. By now, the entire party has heard about the outrageous boldness of Sarah. The party turns silent as the elder slowly begins to whisper her answer. “Well, I grew up in the depression and we didn’t have a pan big enough to fit the whole ham. So, we’d cut off part of it and saved it for another meal.”


Three factors in the short ham story caused change. First, Sarah’s courage to take on the project of cooking the ham started the change. Second, Sarah’s willingness to listen and learn the processes of others in the family gave her credibility in the eyes of the family. Finally, Sarah’s question – why – that created change. It was only with audacity that Sarah was able to educate and make the holiday feast more enjoyable.

The same can be said about leading your company toward of data governance. You have to have the courage to take on new projects, understand the business processes, and ask why to become an agent for change in your organization. A leader has to get past resistance and convince others to embrace new ways of doing things.

Building credibility is the key to overcoming the resistance. If you were to sit down and work for a day in the billing center, call center or purchasing agent job, for example, people there will see that you understand them and care about their processes. At the very least, you could invite a business person to lunch to understand their challenges. The hearts and minds of the people can be won if you walk a mile in their shoes.

Monday, December 1, 2008

Information Quality Success at Nectar

It’s great when you see data quality programs work. Such is the case in Europe, where Loyalty Management Group (LMG) has improved efficiency and information quality in a very large, retail-based, customer loyalty program. I hadn’t heard of Nectar all that much here in the USA, but the Nectar card is very well-known in the UK. About half of all UK households use it to earn points from everyday purchases and later redeem those points for gifts and prizes. Recently, Groupe Aeroplan purchased LMG and Nectar is now their brand.

Using the databases generated by Nectar, the company also provides database marketing and consulting services to retailers, service providers and consumer packaged goods companies worldwide. Data is really the company’s primary asset.

Nectar data
The data management effort needed to handle half the population of the UK and a good portion of Europe could be perilous. To make matters worse, data entered into the Nectar system generally comes from paper-based forms available in stores or received through mailings, online or by phoning a call center. All of these sources could produce poor data if not checked.

To gain closer business control, the company made business management responsible for data integrity rather than IT. The company also embedded the Trillium Software System in its own systems, including in real-time for online and call center applications.

At first, LMG used just the basic capabilities of the tool to ensure that at enrollment, addresses matched to UK Postcode Address File (PAF). Later, the company engaged a business-oriented data quality steward to review existing processes and propose new policy. For example, they set up various checks using Trillium Software to check for mandatory information at the point of registration. A process is now in place where the data collector is notified of missing information.

Information quality often lands and expands into an organization, once folks see how powerful it can be. In LMG’s case, the Trillium Software System is implemented to help partners match their own customer databases with the Nectar collector database. For certain campaigns, Nectar partners might want to know which individuals are on both their own customer database and on the Nectar database, or which customers are common to both. The Trillium Software System allows for this, including the process of pre-processing the partner’s data where necessary, to bring it up to a sufficient standard for accurate matching.

You can download the whole story on LMG here.

Sunday, November 23, 2008

Picking the Boardwalk and Park Place DQ Projects

This weekend, I was playing a game of Monopoly with my kids. Monopoly is the ultimate game of capitalism. It’s a great way to teach a young one about money. (Given the length of the game, a single game can be a weekend long lesson.) The companies that we work for are also playing the capitalism game. So, it’s not a stretch that there are lessons to be learned while playing this game.

As I took in hefty rents from Pacific Ave, I could see that my daughter was beginning to realize that it’s really tough to win if you buy low-end properties like Baltic and Mediterranean, or any of the properties on that side of the board. Even with hotels, Baltic will only get you $450. It’s only with the yellow, green and blue properties that you can really make an impression on your fellow players. She got excited by finally getting a hold of Boardwalk and Park Place.

Likewise, it’s difficult to win at the data governance game if you pick projects that have limited upside. The tendency might be to fix the data of the business users who are complaining the most or those that the CEO tells you to fix. The key is to keep capitalism and the game of monopoly in mind when you pick projects.

When you begin picking high value targets with huge upside potential, you’ll begin to win at the data governance game. People will stand up and notice when you begin to bring in the high-end returns that Boardwalk and Park Place can bring in. You’ll get better traction in the organization. You’ll be able to expand your domain across Ventnor, St. James Place, gathering up other clean data monopolies.

This is the tactic that I’ve see so many successful data governance initiatives take at Trillium Software. The most successful project managers are also good marketers, promoting their success inside the company. And if no one will listen inside the company, they promote it to trade journals, analysts and industry awards. There’s nothing like a little press to make the company look up and notice.

So take the $200 you get from passing GO and focus on high value, high impact projects. When you land on Baltic, pass it by, at least at first. By focusing on the high impact data properties, you’ll get a better payoff in the end.

To hear a few more tips, I recommend the webinar by my friend Jim Orr at Trillium Software. You can listen to his webinar here.

Disclaimer: The opinions expressed here are my own and don't necessarily reflect the opinion of my employer. The material written here is copyright (c) 2010 by Steve Sarsfield. To request permission to reuse, please e-mail me.