Showing posts with label global information quality. Show all posts
Showing posts with label global information quality. Show all posts

Tuesday, November 16, 2010

Ideas Having Sex: The Path to Innovation in Data Management

I read a recent analyst report on the data quality market and “enterprise-class” data quality solutions. Per usual, the open source solutions were mentioned at a passing while the data quality solutions of the past were given high marks. Some of the solutions picked in the top originated from days when mainframe was king. Some of the top contenders still contained cobbled-together applications from ill-conceived acquisitions. It got me thinking about the way we do business today and how so much of it is changing.

Back in the 1990’s or earlier, if you had an idea for a new product, you’d work with an internal team of engineers and build the individual parts.  This innovation took time, as you might not always have exactly the right people working on the job.  It was slow and tedious. The product was always confined by its own lineage.

The Android phone market is a perfect examples of the modern way to innovate.  Today, when you want to build something groundbreaking like an Android, you pull in expertise from all around the world. Sure, Samsung might make the CPU and Video processing chips, but Primax Electronics in Taiwan might make the digital camera and Broadcomm in the US makes the touch screen, plus many others. Software vendors push the platform further with their cool apps. Innovation happens at break-neck speed because the Android is a collection of ideas that have sex and produce incredible offspring.

Isn’t that really the model of a modern company?  You have ideas getting together and making new ideas. When you have free exchange between people, there is no need to re-invent something that has already been invented. See the TED for more on this concept, where British author Matt Ridley argues that, through history, the engine of human progress and prosperity is "ideas having sex.”

The business model behind open source has a similar mission.  Open source simply creates better software. Everyone collaborates, not just within one company, but among an Internet-connected, worldwide community. As a result, the open source model often builds higher quality, more secure, more easily integrated software. It does so at a vastly accelerated pace and often at a lower cost.

So why do some industry analysts ignore it? There’s no denying that there are capitalist and financial reasons.  I think if an industry analyst were to actually come out and say that the open source solution is the best, it would be career suicide. The old-school would shun the analysts making him less relevant. The link between the way the industry pays and promotes analysts and vice versa seems to favor enterprise application vendors.

Yet the open source community along with Talend has developed a very strong data management offering that should be considered in the top of its class. The solution leverages other cutting edge solutions. To name just a few examples:
  • if you want to scale up, you can use distributed platform technology from Hadoop, which enables it to work with thousands of nodes and petabytes of data.
  • very strong enterprise class data profiling.  
  • matching that users can actually use and tune without having to jump between multiple applications.
  • a platform that grows with your data management strategy so that if your future is MDM, you can seamlessly move there without having to learn a new GUI.
The way we do business today has changed. Innovation can only happen when ideas have sex, as Matt Ridley puts it. As long as we’re engaged in exchange and specialization, we will achieve those new levels of innovation.

Monday, July 6, 2009

June’s "El Festival del IDQ Bloggers”


A Blog Carnival for Information/Data Quality Bloggers

June of 2009 is gone, so it’s time to look back at the month and recognized some of the very best data quality blog entries. Like other blog carnivals, this one is a collection of posts from different blogs on a specific theme.

If you’re a blogger and you missed out on this month’s data quality carnival, don’t worry. You can always submit your brilliant entries next month. So, here they are, in no particular order.


  • Newcomer Jeremy Benson has a unique perspective of being an actuary – someone who deals with the financial impact of risk and uncertainty to a business. We know that improving data quality will certainly produce more accurate assessments when it comes to crunching numbers and calculating risk. This month’s blog entry describes how data quality is important to predictive modeling. More actuaries should understand the importance of data quality, so this is a positive step.

  • Irish information quality expert Daragh O Brien was talking about his marriage problems this month – well, at least the data quality problems with his recording of his marriage. In this post he discusses a recent experience and how it made him think yet again about the influence of organizational culture and leadership attributes on information quality success and change management.


  • Western Australian blogger Vince McBurney contributes his excellent analysis of the new Gartner Magic Quadrant for data quality tools. Vince’s analysis of the LAST Magic Quadrant (two years ago) was perhaps my biggest inspiration for getting involved in blogging, so it makes me happy to include his blog. “Tooling Around on the IBM InfoSphere” is focused on data integration topics from the perspective of an expert in the IBM suite of software tools.

  • Jim Harris takes us into “The Data-Information Continuum” to remind us that data quality is usually both objective and subjective, making reaching the “single version of truth” more mystical. The post made it clear to me that our description of the data quality problem is evolving, and the language we must use to promote our successes must evolve, too.


  • Dalton Cervo is the Customer Data Quality Lead at Sun Microsystems and a member of the Customer Data Governance team at Sun. Dalton takes us on a journey of depuplicating a customer database using a popular data quality tool. It’s great to see the detail of project like this so that we can better understand the challenges and benefits of using data quality tools.


Thanks to all the outstanding data quality bloggers this month!

Friday, June 12, 2009

Interview on Data Quality Pro.com

From Data Quality Pro.com

If you are active within the data quality and data governance community then chances are you will have come across Steve Sarsfield and his Data Governance and Data Quality Insider blog.
Steve has also recently published an excellent book, aptly titled "The Data Governance Imperative" so we recently caught up with him to find out more about some of the topics in the book and to pose some of the many questions organisations face when launching data governance initiatives.


Read the interview>>


Plus, at the end of the interview we provide details of how to win a copy of "The Data Governance Imperative".


Sunday, May 10, 2009

Data Governance – the Movie


To really drive home the challenge of data governance in your company, you have to believe that it’s a movie, not a photo. A snapshot is taken once and done, but that’s not what happens when you embark on a data governance initiative.

In a movie, you start with a hero – that’s you the data governance champion. You have a good heart and want to fight for justice in the cruel data management world.

Next, there needs to be conflict, a dark cloud that overshadows our hero. In most cases, the conflict goes back to the beginning when your company was just starting out. Back then, your first customers may have been from your local area at first, but slowly the circle began to grow - first locally, then regionally, then nationwide, then worldwide. As new offices opened and new systems were born, the silos formed. The hero warned the company that they need a data management strategy, but no one listened. Almost no small or medium sized company thinks about data management when they’re growing up, despite the best efforts of our heroes.

When it comes time to fix it all, you can’t think of it as taking a snapshot of the data and fixing it up with Photoshop. The hero must embark on a long journey of battle and self-sacrifice to defeat evil. Corporate change, like rapid growth, mergers, downsizing, and new laws governing the corporation happens frequently in business. The battle for corporate data management requires small steps to mature the corporation into a better way of doing business. It’s Neo from the Matrix fighting Agent Smith and evolving into ‘the One”. It’s John McLane slowly taking out the bad guys in Nakatomi Plaza.

I see what’s missing in many people’s minds in reference to data governance is that concept of time. It took a long time to mess up the data in your big corporation, and it takes time to reverse it. When you select your tools and your people and your processes for data governance, you always want to keep that enterprise vision in mind. The vision has a timeline, throughout which the data champion will have unexpected issues thrown at them. It’s not about the free data cleansing software that you get with your enterprise application. That stuff won’t hold up when you try to use it once you get out of your native environment. It’s about making sure the process, the team, and the tools stand up over time, across projects, across business units and across data types. There are few and fewer vendors standing who can offer that kind of enterprise vision.

Tuesday, June 3, 2008

Trillium Software News Items

A couple of big items hit the news wire today from Trillium Software that are significant for data quality enthusiasts.

Item One:
Trillium Software cleansed and matched the huge database of Loyalty Management Group (LMG), the database company that owns the Nectar and Air Miles customer loyalty schemes in the UK and Europe.
Significance:
LMG has saved £150,000 by using data quality software to cleanse its mailing list, which is the largest in Europe, some 10 million customers strong. I believe this speaks to Trillium Software’s outstanding scalability and global data support. This particular implementation is an Oracle database with Trillium Software as the data cleansing process.


Item Two:
Trillium Software delivered the latest version of the Trillium Software System version 11.5. The software now offers expanded cleansing capabilities across a broader range of countries.
Significance:
Again, global data is a key take-away here. Being able to handle all of the cultural challenges you encounter with international data sets is a problem that requires continual improvement from data quality vendors. Here, Trillium is leveraging their parent company’s buyout of Global Address to improve the Trillium technology.


Item Three:
Trillium Software released a new mainframe version of version 11.5, too.
Significance:
Trillium Software continues to support data quality processes on the mainframe. Unfortunately, you don’t see other enterprise software companies offering many new mainframe releases these days, despite the fact that the mainframe is still very much a viable and vibrant for managing data.

Disclaimer: The opinions expressed here are my own and don't necessarily reflect the opinion of my employer. The material written here is copyright (c) 2010 by Steve Sarsfield. To request permission to reuse, please e-mail me.