Monday, July 13, 2009

Data Quality Project Selection

What if you have five data intensive projects that are all in need of your very valuable resources for improving data quality? How do you decide where to focus? The choice is not always clear. Management may be interested in accurate reporting from your data warehouse, but revenue may be at stake in other projects. So, just how do you decide where to start?

To aid in a choice between projects, it may help to plot your projects on a “Project Selection Quadrant” as I’ve shown here. The quadrant chart plots the difficulty of completing a project versus the value it brings to the organization.

Project Difficulty
To find the project on the X axis, you must understand how your existing system is being used; how various departments use it differently; and if there are special programs or procedures that impact the use of the data. To predict project length, you have to rely heavily on your understanding your organization's goals and business drivers.

Some of the things that will affect project difficulty:
Access to the data – do you have permission to get the data?
Window of opportunity – how much time do you have between updates to work on the data
Number of databases – more databases will increase complexity
Languages and code pages – is it English or Kanji? Is it ASCII or EBCDIC? If you have mixed languages and code pages, you may have more work ahead of you
Current state of data quality – The more non-standard your data is to begin with, the harder the task
Volume of data – data standardization takes time and the more you have, the longer it’ll take
Governance, Risk and Compliance mandates – is your access to the data stopped by regulation?

Project Value
For assessing project value (the Y axis), there is really one thing that you want to look at – money. It comes from your discussions with the business users around their ability to accomplish things like:
• being able to effectively reach/support customers
• call center performance
• inventory and holding costs
• exposure to risk such as being out of compliance with any regulations in your industry
• any business process that is inefficient because of data quality

The Quadrants
Now that you’ve assessed your projects, they will naturally fall into the following quadrants:

Lower left: The difficult and low value targets. If management is trying to get you to work on these, resist. You’ll never get anywhere with your enterprise-wide appeal by starting here.
Lower right: These may be easy to complete, but if they have limited value, you should hold off until you have complete corporate buy-in for an enterprise-wide data quality initiative.
Upper left: Working on high value targets that are hard complete will likely only give your company sticker shock when you show them the project plan. Or, they may run into major delays and be cancelled altogether. Again, proceed with caution. Make sure you have a few wins under your belt before you attempt.
Upper right: Ah, low-hanging fruit. Projects that are easier to complete with high value are the best places to begin. As long as you document and promote the increase in value that you’ve delivered to the company, you should be able to leverage these wins into more responsibility and more access to great projects.

Keeping an eye on both the business aspect of the data, its value, and the technical difficulty in standardizing the data will help you decide where to go and how to make your business stronger. It will also ensure that you and your business co-workers to understand the business value of improving data quality within your projects.


Charles Burleigh said...


This is a great post on how to get small, quick wins in data quality and build a reputation for success in your organization. This post is inspiring me to take more interest in a position that wasn't exactly what I am looking for at first, however is looking like a great way to get into a company and take small steps towards initializing better data quality opportunities down the road.

Steve Sarsfield said...

Great. Go get 'em, Charles!

Disclaimer: The opinions expressed here are my own and don't necessarily reflect the opinion of my employer. The material written here is copyright (c) 2010 by Steve Sarsfield. To request permission to reuse, please e-mail me.